Removal of FKBP12 Enhances mTOR-Raptor Interactions, LTP, Memory, and Perseverative/Repetitive Behavior
نویسندگان
چکیده
FK506-binding protein 12 (FKBP12) binds the immunosuppressant drugs FK506 and rapamycin and regulates several signaling pathways, including mammalian target of rapamycin (mTOR) signaling. We determined whether the brain-specific disruption of the FKBP12 gene in mice altered mTOR signaling, synaptic plasticity, and memory. Biochemically, the FKBP12-deficient mice displayed increases in basal mTOR phosphorylation, mTOR-Raptor interactions, and p70 S6 kinase (S6K) phosphorylation. Electrophysiological experiments revealed that FKBP12 deficiency was associated with an enhancement in long-lasting hippocampal long-term potentiation (LTP). The LTP enhancement was resistant to rapamycin, but not anisomycin, suggesting that altered translation control is involved in the enhanced synaptic plasticity. Behaviorally, FKBP12 conditional knockout (cKO) mice displayed enhanced contextual fear memory and autistic/obsessive-compulsive-like perseveration in several assays including the water maze, Y-maze reversal task, and the novel object recognition test. Our results indicate that FKBP12 plays a critical role in the regulation of mTOR-Raptor interactions, LTP, memory, and perseverative behaviors.
منابع مشابه
Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex.
The raptor-mTOR protein complex is a key component of a nutrient-sensitive signaling pathway that regulates cell size by controlling the accumulation of cellular mass. How nutrients regulate signaling through the raptor-mTOR complex is not well known. Here we show that a redox-sensitive mechanism regulates the phosphorylation of the raptor-mTOR effector S6K1, the interaction between raptor and ...
متن کاملRictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton
The mammalian TOR (mTOR) pathway integrates nutrient- and growth factor-derived signals to regulate growth, the process whereby cells accumulate mass and increase in size. mTOR is a large protein kinase and the target of rapamycin, an immunosuppressant that also blocks vessel restenosis and has potential anticancer applications. mTOR interacts with the raptor and GbetaL proteins to form a compl...
متن کاملMolecular Docking studies of FKBP12-mTOR inhibitors using binding predictions
UNLABELLED Mammalian target of rapamycin (mTOR) is a key regulator of cell growth, proliferation and angiogenesis. mTOR signaling is frequently hyper activated in a broad spectrum of human cancers thereby making it a potential drug target. The current drugs available have been successful in inhibiting the mTOR signaling, nevertheless, show low oral bioavailability and suboptimal solubility. Con...
متن کاملmTOR pathway and Ca2+ stores mobilization in aged smooth muscle cells
Aging is considered to be driven by the so called senescence pathways, especially the mTOR route, although there is almost no information on its activity in aged tissues. Aging also induces Ca²⁺ signal alterations, but information regarding the mechanisms for these changes is almost inexistent. We investigated the possible involvement of the mTOR pathway in the age-dependent changes on Ca²⁺ sto...
متن کاملGbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR.
mTOR and raptor are components of a signaling pathway that regulates mammalian cell growth in response to nutrients and growth factors. Here, we identify a member of this pathway, a protein named GbetaL that binds to the kinase domain of mTOR and stabilizes the interaction of raptor with mTOR. Like mTOR and raptor, GbetaL participates in nutrient- and growth factor-mediated signaling to S6K1, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 60 شماره
صفحات -
تاریخ انتشار 2008